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Basic properties of quantum states for generalized kicked Harper models are studied using the
phase-space translational symmetry of the problem. Explicit expressions of the quasienergy (QE)
states are derived for general rational values q/p of a dimensionless &. The quasienergies form p bands
and the QE states are g-fold degenerate. With each band one can associate a pair of integers o and p
determined from the periodicity conditions of the QE states in the band. For ¢ = 1, o is exactly the
Chern index introduced by Leboeuf et al. [Phys. Rev. Lett. 85, 3076 (1990)] for a characterization
of the classical-quantum correspondence. It is shown, however, that o is always different from zero
for ¢ > 1. The Chern-index characterization is then generalized by introducing localized quantum
states associated in a natural way with o = 0. These states are formed from ¢ QE bands with
a total o = 0 and they define ¢ equivalent new bands, each with 0 = 0. While these states are
nonstationary, they become stationary in the semiclassical limit p — oo.
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I. INTRODUCTION

This paper is devoted to the study of basic properties
of the general quantum Hamiltonian

H=W(@)+V(u) Y 6¢/T-s), (1)

8§=—00

where u and v are dimensionless conjugate phase-space
variables, [u, v] = 2mip (p is a constant), V and W are
general periodic functions with period 27, and T is the
time period. The nonintegrable system (1) is exactly
related [1,2] to the problem of periodically kicked charges
in a uniform magnetic field under resonance conditions
[3,4]. The case W(v) = Lcos(v) and V(u) = K cos(u)
(L and K are parameters), corresponding to the so-called
kicked Harper (KH) model, has been extensively studied
in the recent years [5-11]. This system exhibits a rich
variety of quantum-dynamical properties, due to a very
nontrivial quasienergy (QE) spectrum (i.e., the spectrum
of the one-period evolution operator).

An interesting study of the KH model was performed
in Ref. [5], in the framework of a toroidal phase space.
In this framework, the QE spectrum always consists of a
finite set of levels for each given boundary condition on
the torus. By considering all the boundary conditions,
a level “broadens” into a QE band. With each band
one can associate a topological Chern invariant C (an
integer), analogous to a quantized Hall conductance for
a magnetic subband in the problem of Bloch electrons
in a magnetic field [12]. Several arguments, supported
by numerical evidence, indicate that in the semiclassical
limit QE states with C # 0 are spread over the classi-
cal chaotic region (i.e., they are extended states). On
the other hand, QE states with C' = 0 are localized in
this limit on regular orbits [Kol’mogorov-Arnol’d-Moser
(KAM) tori or periodic orbits] or may be identified with
scars [13], localized on unstable periodic orbits within the
chaotic region.
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In this paper, basic properties of quantum states for
the “generalized” KH model (1) are systematically stud-
ied using the phase-space translational symmetry of the
model. Some aspects of this symmetry have been con-
sidered recently [14, 15, 2] for the related problem of the
kicked harmonic oscillator. Here the symmetry approach
will be used to derive explicit expressions for the QE
states and to study their properties. We shall consider
general rational values of p, p = ¢/p (¢ and p are rel-
atively prime integers). The study of the KH model in
Ref. [5] corresponds to the special case ¢ = 1. Our results
for ¢ > 1 indicate that the Chern-index characterization
of the classical-quantum correspondence [5] should not
be restricted to QE states, but should be generalized to
include nonstationary states.

We show that, in general, the QE spectrum consists of
p bands and the QE states are g-fold degenerate. Each
band can be characterized by an integer o, determined
from the periodicity conditions of the QE states in the
band. This integer corresponds to the Chern topologi-
cal invariant C in Ref. [5]. We find, however, a second
Chern invariant p for a band. The integers o and p are
related by a Diophantine equation, from which it follows
that o can never vanish for ¢ > 1. This fact is closely
connected with the g-fold degeneracy of the QE states.
Situations where all the Chern indices are nonzero have
been pointed out by Faure and Leboeuf [5] in the case
of integrable systems and have also been attributed to
degeneracies due to “special” symmetries. However, the
symmetry of the KH model for ¢ > 1 is certainly not
special. It is, in fact, the most general symmetry allow-
ing for a toroidal-phase-space description. It is therefore
most important to maintain, in this generic case, the clear
distinction between localized and extended states on the
basis of a zero or a nonzero value of the Chern index.

We show that localized states with 0 = 0 for ¢ > 1
can be consistently defined as linear combinations of QE
states in a group of ¢ bands with a total value of o equal
to zero (in general, the total value of o for n bands may
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vanish only if n is a multiple of ¢q). Each such group of
QE bands provides ¢ independent localized states defin-
ing ¢ “new” bands, which are completely equivalent to
the ¢ QE bands. Each new band is associated with a
zero value of o. This is a natural definition of localized
states, having the desirable property of being relatively
stable under variations of p. While the localized states
are necessarily nonstationary (even in a toroidal phase
space), they become stationary in the semiclassical limit
p — oo. We present here only the general theory. The
detailed construction of quantum states properly local-
ized on classical orbits for ¢ > 1, as well as a study of
their quantum dynamics, will be the subject of a separate
publication [16].

Some of our results have analogs in the theory of Bloch
electrons in uniform magnetic fields with 1/p flux quanta
through a unit cell [17-20] (we shall refer to this system
as to system M). In fact, system M is also invariant un-
der phase-space translations, i.e., the “magnetic transla-
tions” [17]. However, the results obtained for (1) usually
contain more information than the corresponding results
for system M. This is because system (1) features only
one degree of freedom [(u, v)], in contrast with system
M featuring two degrees of freedom.

The paper is organized as follows. In Sec. II we con-
sider the phase-space translational symmetry of (1) for
general rational values ¢/p of p and derive from it ex-
plicit expressions for the QE states. Basic properties of
these states are studied in Sec. III, after reducing the
QE problem to the eigenvalue problem of a p X p ma-
trix. The QE states are then characterized by two Chern
integers o and pu, satisfying a Diophantine equation and
sum rules. In Sec. IV we generalize the Chern-index
characterization of Ref. [5] by introducing phase-space
lattices of localized states spanning ¢ bands. The con-
ditions for the completeness and orthogonality of these
states relative to the space of the ¢ bands are derived.
The integrable limit of the Harper model [21,12] is dis-
cussed. Conclusions are presented in Sec. V.

II. PHASE-SPACE TRANSLATIONAL
SYMMETRY AND QUASIENERGY STATES

The one-period evolution operator for (1), from ¢t = —0
tot =T — 0, is given by
U = exp[—iW (v)T/h] exp[—iV (u)T/h] . (2)

Because of [u, v] = 27mip and the 27 periodicity of V
and W, the operator (2) commutes with the phase-space
translations

DO — eia’u , D1 — eiau , (3)
with the minimal value of & = 1/p. The operators (3)
generate then the invariance group G of U, which is a
subgroup of the Heisenberg-Weil group Wy [22] of phase-
space translations in the (u, v) plane. In general, the
operators (3) (o = 1/p) do not commute, but G may
have Abelian (commutative) subgroups G, with basic el-
ements Dg and Dj, for some integer powers r and s. This
is the case only if p is rational:

rs q
—=p = p=-=, (4)
p p

where ¢ = 7s and ¢ and p are coprime if we choose the
smallest value of rs satisfying (4). The operators DJ and
D3 generate then a maximal Abelian subgroup G, of G.
From now on, we shall make the “standard” choice r = gq,
s = 1, giving the basic commuting operators

D1 = eiu/p ; D2 = Dg = ei”” . (5)

The QE states will be chosen as simultaneous eigenstates
of the operators (2) and (5). Since G can be expressed as
the coset sum Zg____é DjG,, each QE state must be g-fold
degenerate (see also below).

In order to derive explicit expressions for the QE
states, we introduce first a quantum-mechanical repre-
sentation based on the complete set of operators D; =
e and D,, where £ is the smallest number for which D,
and D; commute [23]. We easily find that 8 = 1/(pp) =
1/q, so that the complete set is

Dy =e™/9 | D, = e, (6)
The operators (6) generate a maximal Abelian subgroup
W, of the Heisenberg-Weil group. The simultaneous
eigenfunctions of (6), defining the representation, are
given by the kq distributions [23]

Yw(v) = Z exp(ilwy/q)é(v — wa + 27l /p) , (7)
l=—o00
where w = (w;, wz) is the “quasimomentum,” giving

the eigenvalues exp(iw;/q) and exp(ipw;) of D; and D,
respectively, and ranging in the “Brillouin” zone

0 <w; <27mq, 0<w;<2r/p. (8)

Since D; = DY, the group G, is a subgroup of index p of
W, and a general eigenstate of the operators (5) can then
be expressed as a linear combination of p distributions
(7) at w = (w1 + 27mgq/p, w2), m = 0,..., p—1. In
particular, this will be true for the QE states, which are
simultaneous eigenstates of (2) and (5):

p—1
¥y w(v) = Z &b(m; W)W, +2rmpw, (V) (9)
m=0

where b is a “band” index (see below), which should as-
sume precisely p values, b = 1,...,; p, corresponding to
p independent vectors of coefficients ¢,(m; w), which
are needed to obtain a complete set of functions (9).
The states (9) are eigenstates of (5) with eigenvalues
exp(iwy/p) and exp(ipwy), where w now ranges in the
reduced Brillouin zone

0<w <2mp, 0<wy <27m/p, (10)

which is 1/p of the zone (8).

III. PROPERTIES OF QE STATES
AND CHERN INDICES

We now require (9) to be eigenstates of U in (2) with
eigenvalues exp(—iEyT /h), where Ej are the quasiener-
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gies. Expanding in the Fourier series

oo
§ : iru
Jl,re ’

exp[—iV (u)T/h] =

exp[—iW (0)T/h] = Y Jope™™, (11)

where Jy, and Ja, are “generalized” Bessel functions,
and applying (11) to (9), we find, after some algebra,

p—1
U\I’b,w(’ll) — Z Fl,l(wl)FZ,l’ (wz)ei(lw1+l’w2)
l, I'=0
p—1
X Z ¢b(m; w)ez"”lmp'wwl+27r(m—l’)p,wz (’U) )
m=0
(12)
where, for j = 1,2,
Fiu(w;) = Y Jimppie ™ . (13)
r=-—00
Defining
$o(m; W) = ™2 dp(m; W) (14)

and using the independence of the kg functions (7) [23],
we obtain from (12) the eigenvalue problem for the vector

Vo(w) = {gs(m; W)}m=o,...p-1:

M(W)Vb(w) = exp[—iEp(W)T/R]Vp(W) , (15)

where the p X p matrix M (w) has elements

Mo i (W) = exp[—iV (w1 +21m’ )T /K] Fy i —m (w2)

(16)

m, m' =0,..., p—1. Thus, at fixed w, the QE spectrum
consists of p levels Ejp, which span p QE bands Ey(w) as
w varies in the zone (10). Now, the eigenvalue problem
(15) with (16) and (13) is clearly periodic in the two-
dimensional torus
0<w <2m, 0<w; <2m/p. (17)
On the other hand, it is easy to show, using (14) and (16),
that the eigenvalue spectrum is invariant under w; —
w; + 2mp, with the set of eigenvectors V,(w) satisfying
|

b Bw;y Swgy b Bws

Vb(wl + 27p, w2)
Im + 1|p)]

»p—1

= exp[ive(W)]{exp[iwz(m —

xq_Sb:(|m + 1|p; W)}m:O,... (18)

where exp[iyp(W)] is some phase factor, ¥’ = b'(b), and
|m|p, = m modp. Since the eigenvalue spectrum is peri-
odic in w; with the periods 27p and 2m [see (17)], the
actual period of the spectrum must be 27 /p.

We now make the assumption of noncrossing QE
bands, i.e., that exp{i[Ey (W) — Ep(w)]T/h} # 1 for
b # b'. It then follows that exp[—iEy(w)T/#] is periodic
in both w; and w, with the period 27 /p, for each band
b. Similarly, the relation (18) is satisfied with b’ = b and
Vs(w) is periodic in w, with period 27/p (up to some
phase factor). This implies that the QE states (9) are
periodic in the zone (10), but, in general, only up to a
w-dependent phase factor. As in the case of magnetic
Bloch states [18, 19], the phase of (9) can always be cho-
sen so that the periodicity conditions satisfied by the QE
states are, in general,

‘I’b,w1+21rp,wz (U) = \I’b,w (’U) 3 (19)
Wby, w5 +2r/p(V) = exp(ioew1/p) Yo,w(v) - (20)
Here oy is an integer corresponding precisely to the Chern
index C in Ref. [5] (see Sec. IV). The choice of phase of
the QE states is then such that v,(w) = 0 in the relation
(18) (with b’ = b). From the fact that the eigenvalues
exp[—iEy(w)T/h] are periodic in a zone ¢ times smaller
than (10) (see above), it follows that the QE states in
each band are g-fold degenerate. The degenerate states
may be obtained by applying to ¥y w(v) the g operators
t,r =0,.. qg—1, where Dy = €**/? commutes with
U (see Sec. II). Using (9) with (7) and the fact that
Vo (wy +2m, we) = Vu(w) [see the relation (24) below, for
which we show that xp,1(w) = 0], we get

Dg¥o,w (v) = exp(irwa/p) Vo, —2mr,w, (V)- (21)

Besides the Chern index o} in (20), there is a second
Chern index for the problem. In fact, the periodic matrix
(16) can be characterized by p Chern homotopic invari-
ants [24], i.e., integers py, associated with the p bands:

i [ dVe(w) |
Ho = o fvb (W) dw dw )

where the contour integral is taken around the boundary
of the torus (17). A useful formula for the computation of
up can be derived using Stoke’s theorem in (22) and ex-
pressions for dVi(w)/dw obtained by differentiating both
sides of Eq. (15) with respect to w:

(22)

VT8M mlvf 8MVb _ VTBM' Vb’VT 8M1/b

7
=5//dw
b'#b

where the double integral is taken over the torus (17).

We now derive a relation between the Chern indices
op and pp. Consider the general periodicity conditions of
the eigenvectors V;(w) in the torus (17):

lezEb: _ ezE;,'

, (23)

[
Vo(wy + 2w, wy) = explixp,1(W)]Vs(w) , (24)
Vo(wy, we + 27/p) = explixp,2 (W) V(W) . (25)

The phase x5,1(W) in (24) can be consistently chosen to
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be zero. This can be seen by iterating the relation (24)
q times and comparing the result with the pth iteration
of the relation (18) [ys(w) = 0 and &' = b]. The phase
Xb,2(W) in (25) can be determined as follows. From Eq.
(20) with (9), (7), and (14), we get

Vo(w1, we +27/p) = exp(—iw1/q + iopw1/p) V(W) .
(26)

By comparing (26) with (25), we find that xp2(w) =
&wy, where &, = 0p/p — 1/q. Now, this form of xp (W)
is consistent with the relation (24) [xs,1(w) = 0] only if
&b is an integer. This integer is precisely the Chern index
Ip, as one can easily verify using (24) and (25) (with the
phases above) in (22). The expression above for §, can
then be written as

POy —qus =1. (27)

The Diophantine equation (27) allows one to determine
uniquely o} once pp is known [e.g., from formula (23)]. It
follows from (27) that when ¢ > 1, o cannot assume, in
principle, all values, but only values differing from each
other by a multiple of g. Moreover, the value o, = 0
is clearly forbidden when g > 1. These properties are
closely connected with the g-fold degeneracy of the QE
states (see the Appendix).

Since the integers up are homotopic invariants char-
acterizing a finite p X p periodic matrix, one must have
> b1 ks = 0 [24]. It then follows from Eq. (27) that

Son=1. (28)
b=1

In particular, for p = 1 (one-band QE spectrum), one
must have uy = 0 and o, = 1. In fact, the QE states
(9) coincide in this case with the kg functions (7), which
satisfy the periodicity conditions (19) and (20) with o =
1. The one-band QE spectrum is explicitly given by

Ey(w) = V(w1) + W(wz) .

IV. LOCALIZED STATES

A topological characterization of the classical-quantum
correspondence was introduced in Ref. [5] in the frame-
work of a toroidal phase space. In this phase space, an
arbitrary quantum state has to be an eigenstate of two
commuting phase-space translations defining the torus.
The torus area must then be an integer multiple N of
2mh. The eigenvalues of the commuting phase-space
translations determine the boundary conditions of the
quantum state. A quantum-dynamical evolution opera-
tor assumes, for each boundary condition, precisely NV
eigenvalues that span N bands as the boundary condi-
tions are varied. With each band one can associate a
Chern index C determined from the periodicity condi-
tions of the eigenstates in the band. Several arguments
have been given that in the semiclassical limit eigen-
states with C' # 0 are spread over the classical chaotic
region (extended states). On the other hand, eigenstates

with C = 0 are localized in this limit on regular orbits
(KAM tori or periodic orbits) or may be identified with
scars [13], localized on unstable periodic orbits within the
chaotic region.

This theory was illustrated in the case of the KH
model, where the unit cell of periodicity was naturally
identified with the torus (the phase space). One can
easily verify that with this identification the basic com-
muting phase-space translations are given by (5) with
g =1 (p = 1/p). Moreover, with h = 2mp, one finds that
N = p. The study of the KH model in Ref. [5] is then
essentially a special case of our approach. Using the for-
mula determining the Chern index C from the periodicity
conditions of the eigenstates in Ref. [5], one can easily
ascertain that C is just the integer o} in (20) (see remark
[25]). However, the existence of the second Chern index
Up Was not noticed in Ref. [5].

In the general case of ¢ > 1, the toroidal phase space
contains precisely ¢ unit cells (and NV = p as before). In
this case, the theory of Ref. [5] is not applicable since, as
we have shown in Sec. III, 0 = C never vanishes. This
fact is closely connected with the g-fold degeneracy of the
QE states (see the Appendix). We now show, however,
that quasistationary localized states with o = 0 can be
defined in a natural and consistent way for ¢ > 1. This
definition has the desirable property of being relatively
stable under perturbations of p.

Consider a general square-integrable state, expressed
as a linear combination of QE states belonging to an
arbitrary set of n bands, n < p:

4@ =Y [awBD ), (29)
b=1

where » = 1,..., ¢ is an index associating the state to one
of the ¢ unit cells (see below), the integral is taken over

the Brillouin zone (10), and Bér)(w) is the expansion
coefficient. The state (29) can be translated in phase
space so as to be localized around an arbitrary unit cell:

A,.('U; ll,lz) = DilDlzzAr(v) ) (30)

where [; and l; are integers and D; and Dj are basic
commuting translations, such as those in (5). In the
toroidal phase space defined by D; and D,, the quantum
states corresponding to (30) should satisfy boundary con-
ditions determined by w and should approach locally the
states (30) as the size of the torus tends to infinity (e.g.,
p,q — 00). These properties are exhibited in a natural
way by the symmetry-adapted sums

2 oo

Z exp(—iwily /p — iwal2/p)

li,la=—00

T p
Ar(v; w) = 4n2q

XA,-('U; 11’12) = Xn:Bl()T)(w)‘I’bxw(v) ? (31)

b=1

where the last expression follows from (30) and (29). In
a sense, the index w in the toroidal phase space plays the
role of the lattice index (I1,l2), labeling the states (30) in
ordinary phase space. The relation (31) and its inverse,
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A (v 1y,l3) = /dwexp(z’wlll/p-}-iwzlz/p)fi,(v; w),

provide the connection between the two sets of states (30)
and (31) in the ordinary and the toroidal phase space,
respectively. A key observation is now that the states
(31) satisfy the periodicity conditions (19) and (20) with
o = 0. One can then use the expression (31) as a starting
point to define localized states. For this definition to be
consistent with the one based on QE states with C = 0
in the case ¢ = 1 [5], the n bands and the expansion
coeflicient Bér)(w) in (29) should be properly specified.
The basic specification will be made here using general
arguments. A more detailed specification of quantum
states associated with classical orbits of (1) for ¢ > 1 will
be given elsewhere [16].

Our first observation is that rational values of p of the
form p = 1/p’ and p = q/p can be arbitrarily close to each
other so that they should not lead to drastically different
physical situations (stability under perturbations of p).
It is reasonable to assume that each of the p’ QE bands
for p = 1/p’ should correspond, in some sense, to a group
of approximately ¢ adjacent bands in the case of p =
g/p. Since the total value of o is always 1 [see (28)], it
is plausible to conjecture that the total value of o for
this group of bands should be approximately equal to
the value of o for the corresponding band in the case of
p=1/p".

Let us check this conjecture in the integrable limit
[T — 0 in (1)] of the Harper model [21, 12], with
H = V(u) + W(v). For particular choices of V and W,
one finds [12] that the total value of o carried by the
lowest (or highest) n bands, n < p/2, is uniquely deter-
mined by the equation po + gs = n, where the integer s
must satisfy |s| < p/2. It follows from this that ¢ = 0
if n is a multiple of ¢q. If we assume, for definiteness,
that p = 2lg + ¢’, where ! and ¢’ are some positive inte-
gers (¢’ < q), the spectrum consists then of a “central”
group of ¢’ bands carrying a total o = 1, surrounded by
2l groups of ¢ bands, each group carrying a total o = 0.
The central group may be viewed as corresponding to
the central band in the case of p = 1/(2] + 1), while the
surrounding groups correspond to the other 2/ bands.

In general, it follows from Eq. (27) that a total value
of 0 = 0 may be carried only by a group of precisely q (or
a multiple of ¢) bands. It is then natural to choose the
q localized states (31) as linear combinations of a group
of n = q adjacent QE bands carrying a total o = 0 (we
assume, of course, that ¢ < p). These states, character-
ized each by 0 = 0 (see above), should then resemble
the states associated with the corresponding band with
o = 0 in the case of p = 1/p’ = ¢g/p. In particular, for
the Harper model discussed above, the states associated
with any of the 2! groups of ¢ bands should be local-
ized on regular classical orbits, while the QE states in
the central group of ¢’ bands should be supported by the
separatrix, as in the p = 1/p’ case [5].

The requirement to have n = ¢ bands in (29) with
a total o = 0 is actually most essential from a different
point of view. The states (31) in the toroidal phase space

are extended states in ordinary phase space. They may
be viewed as defining ¢ “new” bands, labeled by the index
r = 1,..., g, and corresponding, as a single entity, to a
band with ¢ = 0 in the case of p = 1/p’ ~ ¢/p. If these
new bands are now to be used instead of the n original
QE bands, one must necessarily have n = q. Moreover,
since each new band in (31) is associated with o = 0, it is
intuitively obvious that the total value of o, o4, carried
by the original ¢ QE bands must be zero [notice that Eq.
(27) implies only that o4 is a multiple of g]. In fact, we
now show that the ¢ new bands are completely equivalent
to the original QE bands, i.e., they span the same space
of functions if and only if oy = 0.

We first show that if 0, # 0 the two sets of bands
in (31) cannot be equivalent, since the ¢ x ¢ matrix

B,ST)(W), b,r = 1,..., q, is not invertible for all w. The

function Bér)(w) clearly satisfies the periodicity condi-
tions (19) and (20) with o} replaced by —o,. Moreover,
this function must be, at least, continuous if the states
(29) are sufficiently localized. The determinant A,(w)

of B,(,r) (w) is then, at least, a continuous function sat-
isfying the conditions (19) and (20) with o} replaced by
— Y 8_,0b = —0g4. It isknown (see, e.g., the Appendix in
Ref. [19]) that such a function must assume at least |o|
zeros (counting multiplicities) in the Brillouin zone (10).
This means that the transformation in (31) is not invert-
ible for all w if o4 # 0. On the other hand, when o, = 0,

the matrix B,ET) (w) can always be chosen to be nonsin-
gular, in fact unitary. This is accomplished by choosing
B,(,r)(w), r =1,..., g, as the q orthonormal eigenvectors
of a ¢ X q periodic Hermitian matrix whose ¢ homotopic
invariants are precisely the given o}’s. Such a matrix can
always be constructed explicitly [24]. This completes the
proof of the claim above.

While the localized states (31) are nonstationary, their
completeness and orthogonality properties are time in-
dependent. This is clear from the fact that after s time
steps, the expansion coefficients in (31) are replaced by

Bér)(w, t=sT) = exp[—iEb(w)sT/h}B,Er)(w) . (32)

Thus, for example, the determinant of the matrix (32)
will never vanish if it does not vanish at ¢ = 0. This
expresses the simple fact that the zero Chern index char-
acterizing the localized states (31) is a constant of the
motion, despite the nonstationarity of these states. In
any case, for ¢/p sufficiently small, the group of ¢ QE
bands in (32) will generally be very narrow and the lo-
calized states are then almost stationary.

By choosing the matrix Bl(,r)(w) to be unitary in the
case 0, = 0 (see above), the localized states (31) be-
come orthonormal, both in w and in the “new band”
index r (“Wannier functions”). Then, different values
of 7 should correspond, in general, to states A4,(v; w),
r = 1,..., g, localized around different unit cells within
the torus. Thus the index r may label also the localiza-
tion site. However, there is no reason to assume that the
localization profiles around the g unit cells will be the
same. Because of this fact, the Wannier functions may
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not be best localized on classical orbits in the semiclas-
sical limit. A more natural choice is

A, (v; w) = DjA(v; w), (33)

where Dy = €™/ is the basic phase-space translation
within the torus (see Sec. II) and A(v; w) is some prop-
erly chosen state localized around the unit cell » = 0.
Then A,(v; w) in (33) is localized around the unit cell
r and has the same localization profile as A(v; w). It is
easy to show, using (21), that the expansion coefficients
in (31), corresponding to the states (33), are given by

B,ET)(W) = exp(irwz/p)Bp(wy + 277, wa) , (34)

where By(w) is the expansion coefficient for A(v; w).
In general, the matrix (34) has the desired property of
being nonsingular for o4 = 0, but it is not unitary. Thus
the states (33) are not orthogonal, which is the price one
must pay in order to have states naturally localized with
the same localization profile on all unit cells.

It is instructive to compare the localized states (33)
with the degenerate QE states (21), which are also gen-
erated by ¢ applications of Dg. While o3 # 0 for ¢ > 1,
a QE state ¥ (v) may be localized, in the Husimi
(coherent-state) representation ¢pw(2) = (z|¥pw), on
classical orbits in one unit cell. This has been verified by
Faure and Leboeuf [5] in the case of integrable systems
for which all the Chern indices are nonzero. A degenerate
QE state (21) will be then localized with the same local-
ization profile in another unit cell. In the localization
domain of ¥y w(v), @bw(z) does not vanish. However,
since o, # 0, it may well vanish in regions correspond-
ing to the localization domains of the degenerate states.
In fact, this has been observed in the systems studied
by Faure and Leboeuf [5]. Consider, on the other hand,
the Husimi representation (z|4,(v; w)) of the localized
states (33). Since o = 0 for these states, it is possible
to define their localization domain, as in Ref. [5], as the
set of z values for which (z|A,(v; W)) never vanishes as
w spans the Brillouin zone (10). It is then easy to show,
using (33) and (34), that this localization domain repeats
itself on all the ¢ unit cells (i.e., it is translationally in-
variant), and it is the same for all the g localized states
(33). At the same time, a state A,(v; w) is, of course,
dominantly localized in the rth unit cell. These proper-
ties, which are not possessed by the QE states for ¢ > 1,
are another indication of good localization features of the
states (33). In a future work [16], we shall show how the
basic function By(w) in (34) should be chosen in order
to give localized states (33) associated in a most natural
way with classical orbits in the semiclassical limit.

V. CONCLUSIONS

The generalized KH models (1) form the simplest class
of nonintegrable systems (1.5 degrees of freedom) ex-
hibiting phase-space translational symmetry. They are
also exactly related [1, 2] to the physically realizable sys-
tem of periodically kicked charges in a uniform magnetic
field under resonance conditions [3,4]. We have used the

phase-space translational symmetry of (1) to derive ex-
plicit expressions for the QE states and to study their
basic properties. General rational values g/p of p (the
dimensionless %) have been assumed. These are the only
values allowing for a toroidal-phase-space approach to
the problem. The main properties established are that
(a) the QE spectrum consists exactly of p bands, (b) the
QE states are g-fold degenerate, (c) with each QE band
b one can associate two Chern indices o, and up related
by a Diophantine equation, and (d) the sum of o} over
the p bands is 1.

Properties (b) and (c) have analogs in the theory of
Bloch electrons in magnetic fields with p/q flux quanta
through a unit cell (system M) [18,19]. The magnetic
Bloch states are also g-fold degenerate and the Chern in-
teger op corresponds to the quantum Hall conductance
carried by a magnetic band b [12]. Properties (a) and
(d) do not hold exactly for system M, but only approx-
imately in the limit of a strong magnetic field or weak
periodic potential [19]. In this limit, a Landau level splits
into p magnetic subbands and the relation (28) [property
(d)] then means that the total Hall conductance carried
by these subbands is equal to that of the Landau level.
While the splitting of a Landau level into subbands has
a sound group-theoretical basis [19, 26], it is not exact
and holds only approximately in the limits above [20].
This is because system M features two degrees of free-
dom (the kinetic momentum and the guiding center), in
contrast with system (1), featuring only the (u, v) degree
of freedom that generates the phase-space translational
symmetry. As a consequence, some results that are al-
ways exact for system (1), e.g., formula (23) for the Chern
index up, hold only approximately for system M in the
limits above. Moreover, the QE states can be expressed
in a more closed form than the magnetic Bloch states
[19].

In the generic case of ¢ > 1, all the Chern indices oy
are nonzero, so that according to the theory in Ref. [5] all
the QE states should be considered as “extended.” We
have shown, however, that localized states with o = 0
can be consistently defined as linear combinations of QE
states in ¢ bands: Each group of ¢ QE bands with a total
o = 0 provides g independent localized states, which,
as the boundary conditions w are varied, span ¢ new
bands completely equivalent to the QE bands. Each new
band is associated with a zero value of 0. By arguments
of stability under variations of p, the ¢ QE bands are
expected to be adjacent and to correspond to a QE band
with o = 0 for a neighboring value of p with ¢ = 1. Then,
while the localized states are nonstationary, they become
stationary in the semiclassical limit p — co. A general
and natural form of the localized states is given by (33).
These ideas will be extensively used in a future work [16]
to construct explicitly quantum states properly localized
on classical orbits and to study their quantum dynamics
due to their nonstationarity for finite p.
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APPENDIX: DEGENERACY AND NONZERO
CHERN INDICES

We show here, using also ideas in Ref. [5], how the
g-fold degeneracy of the QE states is connected with
the nonvanishing of all Chern indices o3 for ¢ > 1.
The coherent-state representation of a QE state ¥y (v),
¢bw(z) = (z|¥bw), assumes precisely N = p zeros
within the torus [i.e., the region 2wq x 27 in the (u, v)

phase plane] [5]. The degenerate states (21) have their ze-
ros uniformly shifted by r unit cells (in the u direction),
relative to the zeros of ¢y w(z). Now, using Eq. (21),
it is easy to show that degenerate states with minimal
separation 27/p in the Brillouin zone (see Sec. III) are
given by ¥y w(v) and D ¥y  (v), where 7 is the smallest
non-negative integer satisfying r = (sq+1)/p (s integer).
Clearly, r # 0 for ¢ > 1. Thus every shift w; — w;—27/p
causes the zeros of @ w(z) to be shifted uniformly by =
unit cells. After g such shifts of w;, the Brillouin zone is
completely spanned and the zeros wind precisely r times
around the torus. Since r # 0, this winding of the zeros
is an expression of the fact that C = o, cannot vanish, as
explained in Ref. [5]. In fact, by comparing the definition
above of r with Eq. (27), we see that 7 = 0, mod gq.
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